Template Attacks on ECDSA on a 32-bit ARM

Theory

ECDSA Signature Generation
1. $e = \text{HASH}(m)$
2. Random integer k from $[1, n - 1]$.
3. $r = x \pmod{n}$, where $(x, y) = kG$.
4. Calculate $s = k^{-1}(e + rd_A) \pmod{n}$.
5. The signature is the pair (r, s).

Template Based SPA Attack
- Superior over standard SPA, succeeds even for SPA resistant algorithms
- Describes power consumption with a probability distribution
- Allows classification of all kinds of instructions, operations or features
- Single shot attack

Attack on ECDSA
- ECDSA is well suited for template attacks
- Basepoint G is known and intermediate curve points can be precomputed and classified for a guessed key k
- Successful attacks on the ephemeral key k reveal the secret key d_A

ECC Implementation
- Optimized for 32-bit ARM7 platform, which is used in many modern embedded systems
- NIST curve P192
- Binary and windowed double and always add method (both attacked successfully)
- Standard and constant runtime GF(p) arithmetic (both attacked successfully)

Practical Attack

Used Leakage
- Standard GF(p) implementations leak dramatically due to key-dependent reductions
- Constant runtime GF(p) arithmetic has DPA leakage

Templates for Several Curve Points
- Allows optimal template point selectoin
- Best DPA point per intermediate
- Use only intermediates with large Hamming distance
- Leads to a success rate beyond 99.99%

All implementations have been attacked on this ARM7 based LPC2124 32-bit microcontroller

For the P192 curve a single group operation provides over 100 intermediate values, larger curves even more